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THE PURPOSE OF THESE TWO MINI-COURSES IS TO INTRODUCE, IN A
VERY COMFORTABLE SETTING, THE BASIC IDEAS TO DEAL WITH LIMIT
THEOREMS AND CONCENTRATION INEQUALITIES IN DYNAMICAL
SYSTEMS.

THE GOOD NEWS IS THAT MOST OF THE IDEAS WE INTRODUCE SURVIVE
FOR MUCH MORE GENERAL DYNAMICAL SYSTEMS.



TENTATIVE PLAN

LECTURE 1 : The basic theory and limit theorems for Birkhoff
sums

o Ruelle’s Perron-Frobenius theorem

©

Gibbs measures and their basic properties

©

Equilibrium states and the variational principle

©

Large deviation asymptotics and central limit asymptotics
for Birkhoff sums

LecTureE 2 : Gaussian concentration bound and some
applications

o Gaussian concentration
o A kind of shadowing

o Empirical measure

©

Beyond subshifts of finite type and Gibbs measures, and
beyong Gaussian concentration



PRELUDE: A TOY MODEL

Let Q be a non-empty finite set. Points z €  are called “configurations”.

Given a probability measure v on €2, which is simply a probability vector
here, we define its entropy

s(v) = — Z v(z)logv(z)

€N

where it is understood that ulogu = 0 if u = 0.



Given a function ¢ : Q — R (“potential”), we define a real number Z(¢)
called the partition function and a probability measure p, on €, called a
Gibbs measure, by

def z w €%
z (p):Ze“"( ) and  p(z) £ 7

zeQ

We have the following “variational principle”. The maximum of the ex-

pression
5(1/)+/<pd1/

over all probability measures v on Q is P() = log Z(¢), and is reached
precisely for v = p,. Of course

/npdy = (z)v(z).

:CEQ



Consider the one-parameter family of Gibbs measures (113,)gcR:

eBe(x)
Mﬁw(x) = m

By z 2 l/L:)’(D con elgeS
def

to the equidistribution on Q. = {2 : ¢(x) = maxq ¢} if § — +o0.
An analogous statements holds for 3 — —oo with max replaced with min.
It follows in particular that

ﬁﬂrﬂw/goduﬁw = max and ﬂﬂ}rﬁm/gpduﬁw = mfin ©.



We also have that 3 +— P(B¢) = log Z(B¢) is a real analytic map, and
P(By) = /sod;w
and
2
P”(B(P) = Var,ugw((p) = /(pzdﬂﬁtp - </‘Pdﬂ,6’<p> > 0.

Hence 8 — P(By) = log Z(B) is convex.

We have equality if and only if ¢ is constant.



A consequence: If u* € R such that ming ¢ < u* < maxq ¢, then there
exists a unique value 5* € R such that

/soduﬁ*go =u"

and pg+, maximizes entropy among all the probability measures v such
that [ pdv = u*.

All the previous quantities and identities, appropriately defined in the con-
text of Q = AN will show up.

The goal will be to construct Gibbs measures which are left invariant by
the shift map.



LECTURE 1:
The basic theory and limit
theorems for Birkhoff sums



SHIFT SPACES AND SUBSHIFTS OF FINITE TYPE

A: a finite set
M: a |A| x |A] matrix of zeroes and ones where the (i, j)th entry is zero

precisely when it is a forbidden word of length two.
Define

Q=Qs={z= (22 : 2" € A i>0,Mx" 2™"") =1} C AN

Example : A = {a, b}, M(a, a) = M(a, b) = M(b,a) = 1and M(b, b) = 0,
hence the word bb is forbidden in the configurations.

Shift map T: (Tz)"=2"t', n=0,1,....

Then (2, T) is shift of finite type.



We give A the discrete topology, making {2 a compact space with the cor-
responding product topology which is generated by the corresponding
cylinder sets

[a0a1---a”]: {er::ﬁk:ak,Og kgn}
whered’,...,a"€ An=0,1,....
A distance metrizing €2:
do(z,y) = einf{kzo:mkyéy"}

where 6 € (0, 1) is some fixed number.

Assumption: there exists m > 1 such that M"(s,s’) > 0V(s,s') € A%
This is equivalent to the fact that (2, T) is topologically mixing.



Probability measures are defined on the Borel sigma-algebra which is gen-
erated by cylinder sets.

A probability measure y is shift-invariant if o 7= = p.
Equivalently:

/fo Tdpu = /fdu for all continuous functions f : Q2 — R.

The set of shift-invariant probability measures is compact in the weak
topology.



GoAL

Givenp: Q - R ”, how can one construct
the corresponding Gibbs measures and equilibrium states?

What about uniqueness?

What about their statistical properties?



WHAT WE MEAN BY A GIBBS MEASURE

DEFINITION
A probability measure p on € is called a Gibbs measure for the potential
¢ € C(Q) if there are constants ¢, > 1and P(y) € R such that

e )
7 7 exp (— nP(p) + Swp(x)) ~ 7

for any z = (2')%°, € Q and for any n > 1. We do not require that u

should be shift-invariant.

As usual, Spp(z) = Zj'-’;ol ©(T/z) (nth Birkhoff sum of o under the shift).



If 1 is a Gibbs measure then

. 1 i i _
P(QO): lim *lOg E : esup{S,,ap(z).m—a,l—O,...,n 1}'
n—+oo n
a..,a"TeEA
M(a',at1)=1



For f € C(Q) let
vary(f) = sup{| f(z) = f(y)| : 2" =¢/,0 <i<n—1}.

Then var,(f) — 0.

Now consider
{f €€(Q):3L> 0suchthat var,(f) < L§",n=1,2,...}

and

lip(f) :SUP{W :x#y} :SUP{Varggf) = ]N}.

A norm making this space a Banach space is

£l = 1l fllos + lip(f)-




RUELLE’S PERRON-FROBENIUS OPERATOR

Given ¢ : 2 — R continuous, define Ruelle’s Perron-Frobenius
operator, or transfer operator, R, : C(Q2) — C(Q) as

Rof@) = . fy) e = 37 fly) 7

yeT 'z} Ty=z
= Zf(ax) e?@) 1z eQ
acA

where ar = ax’z'. ...
By induction one checks that

RS (@) = D fly) %

Tky=x
k—1 i k—
— E fld...d'z) eXino P(T'(a... a"'z))
ao,...,ak*‘EA

where R}, = Ry, Rf@ = R, 0 Ry, and so forth.



RUELLE’S PERRON-FROBENIUS THEOREM

Let ¢ be Lipschitz. Then there are A, > 0, K, > 1, h,, Lipschitz, and a
measure v, such that K;T < h, < K, and

Ry hy = Aphy,  RLVp = Ay, /hcpdyg, =1.

Moreover, there exists a constant ¢ = ¢(¢) and p = p(¢) < 1 such that
for all f Lipschitz and for all k > 1 we have

HA;k RE f — ( /fdug@)th < ol £l

where [| - || := || - [loo +lip(").



COROLLARY OF RUELLE’S PERRON-FROBENIUS THEOREM

THEOREM.
Let ¢ be Lipschitz. Then
o The probability measure (i, = hyv,, is shift-invariant.
o It is a Gibbs measure with P(¢) = log A,.
o It is mixing (hence ergodic), and it is the unique Gibbs measure for
®.
o It has exponential decay of correlations: there exist D > 0,
v € (0, 1) such that for f, g Lipschitz

'/f-goT”dmp—/fdu@/gdw

< D[ fliglln", n=o.




PROOF THAT Mo IS SHIFT-INVARIANT

Let f € C(Q).
Notice that for f1, o € C(Q)
(Ref) ) (@)= D fily) =Y fily) ¢*W /(Ty)
Ty=x Ty=x
Ry (fi- (fooT))(2).
Hence

/fd“@ :/fh¢dy¢ :/)‘s;1 Ry hy - f dvy /\;1/Rso(heo‘(f0 T))dv,
= [ (e eI = [ (e (70 T,

/fonzw



PROOF THAT fi,, IS A GIBBS MEASURE (SKETCH)

Fixz € Q,n> 1and let E = [20-.- 2" ].

Then
po(E) = /]lgh@ dv, = )\@”/R; (Lehy)dv,,

Now, get an upper bound and a lower bound for R, (]lEh@).
(We omit the details, see Bowen’s book.)



NORMALIZATION OF POTENTIALS AND PROBABILISTIC
INTERPRETATION THEREOF

One can normalize ¢: For f € C(Q) let

)

ohy
Thus
Q,1=1 and Qfpyp = fp.

Let g denote the inverse of the “Jacobian” of T, and g() the inverse of the
“Jacobian” of Tk, that is,

g= 1 _exp(p) and g =

N h oT kexp(Skap). (1)
@ Ny

_hy
/\!;h(poT



Therefore

Q. f(x)= > 8W)f(y) and QLf(z)= > g¥(w)f

Ty=x Thy=x

We have a Markov chain with state space €2 and the probability to jump
from z to ax is g(ax) (so we are looking “backward in time”).



E@ILIBRIUM STATES AND THE VARIATIONAL PRINCIPLE

Let v be a T-invariant probability measure. Its entropy is

s(v) = lim ! Z v([a®" ")) log v([a®"]).

n—-+o00
aO:n—1€ An

DEFINITION
A shift-invariant probability measure p is an equilibrium state for ¢ €

e(Q) if
s(,u)—i—/god,u: sup (s(v)+/g0dy>.

vis T—invariant

Equilibrium states always exist.

THEOREM (Variational principle for Lipschitz potentials)
Let ¢ be a Lipschitz potential. Then its Gibbs measure i, is the unique
equilibrium state for .



BIRKHOFF’S ERGODIC THEOREM

There exists some measurable set 7,, C Q with 1,(7.,) = 1 (the set of
“typical points” for j1,,) such that

n—1

Y (O / fdpg

n n—-+o00

j=0

for every x € 7, and every continuous function f : Q — R. This state-
ment can reformulated by saying that

n—1
1
En(z) £ = bpy ——
n() n.OTlm _H_OOMW
j:

for every z € 77, in the weak topology sense.



TwoO BASIC QUESTIONS

Take u > 0. At which speed does

I <x €eQ: Snf () > /fd,ug@ + u)

n

decays to 0?

Does S, f/+/n converge in law to Gaussian random variable with mean 0
and with a certain variance to be determined?



LARGE DEVIATIONS OF BIRKHOFF SUMS

Take a continuous function f such that [ fdu = 0.

We are interested in computing the exponential rate at which the -
probability of the set of points x such that S, f(x)/n is, say, greater than
u>0.

We have

Snf(x)

n

,u(a:eQ: 2u>:,u($€§2:65nf(x)2nﬂu) forany 8 > 0

< e—”ﬁu/eﬂs"f du (by Markov’s inequality)

= exp (—n <Bu— llog/eﬁs“fd,LL)) .



Let us make a leap of faith and assume that the following limit exists for
every 8 € R:

def . 1
re(B) = lim flog/eﬁs"fdu.

n—+oo n

We get

lim sup1 log 1 (ac €eQ: Snf (@) > u) < —sup (Bu— kg(B)) = —s¢(u)
n—+oo N n B>0

where s¢ is thus the Legendre-Fenchel transform of xy.



THEOREM
Let ¢ be a Lipschitz potential. Then,

rr(B) = P(¢ + Bf) — P(¥), B €R.

Proof:

Using Ruelle’s PF theorem (first to the potential ¢, and then to the poten-
tial f 4 ), we have for any n > 1

/ #5f dp,
— /eﬁsnfh dv, = /eﬁsnfh d(A,"RY vy)
=, /R” h e "f dl/(p_)\ /Z S”(Wrﬁf)(y))d%(x)
Try=x
= / o+or(ho)dvy
=, / <p+5fh90+,3f< / h dV«er,Bf) dvg + O((pprarAot7)" )) dve.

Hence () = log Ap15r — log Ay = P + Bf) — P(p). O



FULL LARGE DEVIATIONS OF BIRKHOFF SUMS

THEOREM

Let f be Lipzchitz. Assume that f is not cohomologous to a constant, that
is, there is no b Lipschitz and ¢ € R such that f = ¢+ bo T — b. Then for
any interval | with 10 (ps, ps) # () we have

lim Iog,u@ (:L‘ eQ: "];(x) € I> =— inf  s¢(u)

n—+o00 n uEIﬁ(Ef,ﬁf)

where

pr im S = int [ fav

d,@ v T-invariant

and

Pr= I|m —P(tp-i-ﬁf): sup /fdu.

dﬁ v T-invariant

(The case f = ¢+ bo T — bis special because ||Sn f/n||co < ¢+ (2]|b]|oc)/n which becomes close
to c when n > 1,50 S, f/n almost doesn’t fluctuate.)



CENTRAL LIMIT ASYMPTOTICS OF BIRKHOFF SUMS

Let f be Lipschitz such that [ fdu, = 0.
One can prove that

dP(¢ + sf) /
ds s=0 fdue

and 2 f)

Pl +s . 1 2 def 2

RN = it [ oy =

and

oj}:/fde%—zZ/f-fo Tjd,u¢<oo

>

where [ f - f o T/du,, decays expoentially fast to 0.



THEOREM

The variance O'fZ is equal to 0 if and only f is cohomologous to a constant,
that is, there exist b Lipschitz, c € R such that f = ¢+ bo T — b. The
function s — P(p + sf) (s € R) is convex, and strictly convex if 0f2 # 0.



THEOREM (Berry-Esseen inequality for Gibbs measures)
Let f be Lipschitz such that [ fdu, = 0. Assume that 0']% # 0. Then,
uniformly in u € R, we have

i )

In particular, the central limit theorem holds for Lipschitz functions:

Snf(x hw
\J}i ) — N(o, Uf)

The strategy to prove the central limit theorem for Birkhoff sums relies on
characteristic functions and the identity

iBSnf
/e v du¢:/Q;+ﬁf1du<p, BeR

where 1 denotes the function which is constantly equal to 1.






LECTURE 2 :
Gaussian concentration bound,
and some applications



REcap

(Q, T) is a subshift of finite type of the full shift (AN, T) where Ajis a finite
set (alphabet).

Take a Lipschitz potential ¢ : 2 — R (with respect to the distance
do(z,y) = einf{kEO:xkiy"}).

Then there exists a unique Gibbs measure 1, which is shift-invariant:
J ¢, > 1such that

el
7 T exp (= nP(e) + Saplx) T 7

for any z = (2')%°, € Q and for any n > 1, where P(¢) = log A,.
(Remember that R, h, = A, h,, etc.)
Iy is also the unique equilibrium state for o and in particular

P(¢) =S(u¢)+/sodu¢.



We saw two basic limit theorems for Bikhoff sums of Lipschitz functions
(observables):

Large deviations:
For f Lipschitz with [ fdp, =0

,u<p<x€§2:5nf(x)2u>

n

decays exponentially fast with n with rate function given by the Legendre
transform of

B P(p+ Bf) — P(¢).
Central limit theorem:

Snf(x)
\/E

=% N(o, a})

of ,H.+oo:,/(5”f)2dﬂso:/fzd“<ﬂ+22/f‘f07jdﬂgo<OO

Eq



GOING BEYOND BIRKHOFF SUMS AND NON-ASYMPTOTIC
RESULTS

What can we say for general observables of the form F(x, Tz,..., T" 'z)
which are sufficiently regular but otherwise can be non-additive or implic-
itly defined? (Birkhoff sums are an example of an additive F.)

Can be obtain an upper bound for

[y <x € Q: ‘F(ZL‘, Tx,...,T" 'z) — / F(y, Ty,...,T" 'y) d,ug,,(y)‘ > u>
which decays fast in u > 0 and in n (after an appropriate rescaling)?

THIS IS THE PURPOSE OF “CONCENTRATION INEQUALITIES”.



A MOTIVATING EXAMPLE

Consider the empirical measure &,(z) := 1 }7;01 O1ig-

We saw that there exist 7, C Q with j1,(7,,) = 1 such that

Enl) S5 b

for every z € 7, in the weak topology sense.

Consider the Kantorovich distance dyx on the space of probability mea-
sures.

At which speed dy(&n(), 1) goes to 0?



For two probability measures 1, p; on €2

dw (1, p2) = sup </g duq — /g dus 1 g: Q—Ris 1—Lipschitz>

By Kantorovich-Rubinstein theorem one has the dual representation

dw(p1, 2) = inf (//dg(m,y) dr(x,y) : 7 is a coupling of 1 and Mz)



A CLASS OF FUNCTIONS

Let n € IN.
F : Q2" — R is SEPARATELY LipscHITZ if
’F(Jco7 Ty Ty Tty e ey Tn1) — F(Toy oy T, T Ty ,xn,1)‘
< lip;(F) dg(;, )

forall zq,...,zj, ..., zp, 2, inQetVi=1,... n

Basic but important example:

f: Q — R Lipschitz and F(xq,...,xn—1) = f(20) + - + f(Tn_1)
whence F(z, Tz,..., T" 'z) = S, f(z).

One has lip;(F) = lip(f),i=0,...,n—1.



GAUSSIAN CONCENTRATION BOUND (GCB)

THEOREM

Let ¢ be a Lipschitz potential.

Then there exists C > 0 such that, for any n € IN, for any
separately Lipschitz function F : Q" — R, we have

/ dpa (i) eF @ T 0] e T 0)ao () < o I ()

CRuUCIAL POINT : C NEITHER DEPENDS ON 1 NOR ON F.

REMARKS:

e One can get a (ugly) explicit expression for C in terms of |A|,
|hs|lsos |||, m, etc, by using a result by Stoyanov.

e Centering F(x,..., T" 'x) in some way of another is
necessary because the right-hand side is invariant to constant
offsets of the function.



Two COROLLARIES OF GCB(C)

FIRST COROLLARY:

1 (:c €Q:F(z,...,.T"'2) > /F(y, s T y) dpg(y) + U>

2
< exp ,Vne IN,Yu > 0.
( ZCZ/ Ollp( ) )
REMARK:
GCB(C) tells us about F(z,...,T" ') — [ F(y,..., T" 'y) du,(y) but
very often we are interested in F(z,..., 7" 'z), so we have to find a

“good” upper bound for [ F(y,..., T" 'y)duy(y).



Proor

To alleviate notation set

F= F(w,...,T”_%),/FZ/F(y,...,T”_1y)du¢(y),etc.

Then, for any n > 0, one has by Markov’s inequality

i <F—/F > u> = ,uw(en(F_fF) > e””) < e"”/e"(FfF)

an

< e Mes X PiF) (GCB(C) applied to nF).

Then minimize the r.h.s. over 7 > 0. O



Applying the previous bound to —F we get by a union bound

ey <m eQ: ‘F(x, o, T E) — / F(y,..., T””y)d,ugp(y)‘ > u>

u2
<2exp| — ,Vne IN,Vu > 0.
=P ( 200, Iip,-(F)2>



SECOND COROLLARY:

< an_f lip;(F)?.

Hence C > 7~ lip;(F)? is a proxy for the variance of the separately Lips-
chitz function F : Q" — R.



Proor

For every 1 > 0

%(/en(F—IF)dMO_O < 7712< cr’ o lipy(F)? _1>

By Taylor expansion

/en(FfF)dM¢_1:n</(F—/F)>+n;/(F—/F)2+0(772)

=0 =Var(F)

and

2n1

e T X ip(F)? _ th 7). 0



COMPARISON WITH LARGE DEVIATIONS AND CENTRAL
LIMIT ASYMPTOTICS IN THE CASE OF BIRKHOFF SUMS

f: Q — R Lipschitz and F(xq,...,xn—1) = f(20) + - + f(Tn-1)
whence F(z, Tz,..., T" 'z) = S, f(z).

One has lip;(F) = lip(f), hence > 7= lip;(F)? = nlip(f)>.
We get

Mp(;UEQ:

Snf(x) = n/fdﬂap‘ > u) < 2e iy

2
e(N* Yu>0,n>1.



SCALE OF LARGE DEVIATIONS: replace u by un to get

Snf(x) -
Q: ’7— d ‘ > ) <2 C0(f 7 Nu>0,n> 1.
T (.1‘ € p /f fo| = u) < e P u>0,n>

exponentially decaying in n
SCALE OF THE CENTRAL LIMIT THEOREM: replace u by uy/n to get

— [ fdu, ~ i

) > u) <2e 20N Vu>0,n>1.
\f I ~~ B

Gaussian tail

Ky (a:EQ ’

For Birkhoff sums appropriately normalized we get the right dependences
in u and n wrt to large deviations and central limit asymptotics.



Two AppLIcATIONS oF GCB(C)

(AMONG MANY OTHERS)



SHADOWING ORBITS USING ORBITS
STARTED FROM A SUBSET OF ()

Soit B C Q tel que p,(B) > 0:

83( = - |nf ng L T’ [0, 1] .

n yeB <

THEOREM
For all u > /2CIn(u,(B)~") and for all n € IN, we have

u i
uw{xEQ:SB(xjn)Zﬁ}ge 8C .



Proor

Let F(xo, ..., xp—1) = +infycp Z}':_O] do(;, T'y) so that
F(z,...,T" 'z) = Sg(z, n).

You can check that lip;(F) = 1,i=0,...,n— 1.

Using the above corollary we have
uZ
[y {x € Q:Sp(z,n) > /Sg(y,n) dpe(y) + \uﬁ} <e 2,Vn>1,u>0.
n

Now we want to obtain an upper bound for [ Sg(y, n) du,(y).



UpPER BOUND FOR [ Sp(y, n) duu,(y)

We have for every n > 0

o) = [« () dp(o) < [ €19 ()

2
< oS Ss(y:n)dus(v) eczi,, )

~—~
by GBC(C)

Hence

/ Sp(y, n)dpe(y) < —— +

Optimizing over n > 0 yields

/53(97 n)dpup(y) < \/ZCbg(W’(B)_]).




EMPIRICAL MEASURE

Remember that &,(z) = %ZJ";O] 07i; and there exist 7,, C Q with

po(Ta,) = 1such that

Enlw) S e

for every z € 7, in the weak topology sense.

At which speed dy(&n(), 1) goes to 0?

THEOREM
There exists up and C’ > 0 such that for any u > uy and any n > 1

. L —C'?
po (7 € 0 dEne) g 2 ) <



SKETCH OF PROOF

Define the function

n—1
1
F(xo,...,Zn—1) =sup { Zg(a:j)—/gduw g Q= Ris 1—Lipschitz}.
n
j=0
It is pretty clear that lip;(F) < 1/nforalli=1,...,n— 1.

The hard part is to find a good upper bound for [ dw(En(y), 1) dte(y).
We omit the proof.



MORE APPLICATIONS

In the context of shifts of finite type, there are other
applications:

o Plug-in estimator for entropy

o Return times (another entropy estimator)

o Speed of Markov approximation in d-distance.
o Etc.



BEYOND SHIFTS OF FINITE TYPE WITH A GIBBS MEASURE,
AND BEYOND GAUSSIAN CONCENTRATION (VERY
SKETCHY)

There is a large class of nonuniformly hyperbolic dynamical
systems modelled by Young towers with return-time functions
with exponential tails for which GCB(C) holds. The proof is
almost the same as the one for shifts of finite type with a Gibbs
measure.

GCB(C) breaks down for nonuniformly hyperbolic dynamical
systems modelled by Young towers with return-time functions
with polynomial tails.

The prototype of such systems is the map T : [0, 1] — [0, 1]
given by

T <
x <

_ N

14+2%%) 0<
T = x( x) 1_
3 <

where v € (0, 1) is a parameter. The trouble (only) comes from
the indiferrent fixed point at 0.
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