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The purpose of these two mini-courses is to introduce, in a

very comfortable setting, the basic ideas to deal with limit

theorems and concentration inequalities in dynamical

systems.

The good news is that most of the ideas we introduce survive

for much more general dynamical systems.



Tentative plan

Lecture 1 : The basic theory and limit theorems for Birkho�

sums

Ruelle’s Perron-Frobenius theorem

Gibbs measures and their basic properties

Equilibrium states and the variational principle

Large deviation asymptotics and central limit asymptotics

for Birkho� sums

Lecture 2 : Gaussian concentration bound and some

applications

Gaussian concentration

A kind of shadowing

Empirical measure

Beyond subshi�s of finite type and Gibbs measures, and

beyong Gaussian concentration



Prelude: a toy model

Let Ω be a non-empty finite set. Points x ∈ Ω are called “configurations”.

Given a probability measure ν on Ω, which is simply a probability vector

here, we define its entropy

s(ν) = −
∑
x∈Ω

ν(x) log ν(x)

where it is understood that u log u = 0 if u = 0.



Given a function ϕ : Ω→ R (“potential”), we define a real number Z(ϕ)
called the partition function and a probability measure µϕ on Ω, called a

Gibbs measure, by

Z(ϕ)
def

=
∑
x∈Ω

e
ϕ(x)

and µϕ(x)
def

=
e
ϕ(x)

Z(ϕ)
.

We have the following “variational principle”. The maximum of the ex-

pression

s(ν) +

∫
ϕdν

over all probability measures ν on Ω is P(ϕ)
def

= logZ(ϕ), and is reached

precisely for ν = µϕ. Of course∫
ϕdν

def

=
∑
x∈Ω

ϕ(x)ν(x).



Consider the one-parameter family of Gibbs measures (µβϕ)β∈R:

µβϕ(x) =
e
βϕ(x)

Z(βϕ)
.

As
µβϕ(x)
µβϕ(x′) → 0 as β → +∞ if ϕ(x) < ϕ(x′), the measure µβϕ converges

to the equidistribution on Ωmax

def

= {x : ϕ(x) = maxΩ ϕ} if β → +∞.

An analogous statements holds for β → −∞with max replaced with min.

It follows in particular that

lim
β→+∞

∫
ϕ dµβϕ = max

Ω
ϕ and lim

β→−∞

∫
ϕ dµβϕ = min

Ω
ϕ.



We also have that β 7→ P(βϕ)
def

= logZ(βϕ) is a real analytic map, and

P ′(βϕ) =

∫
ϕ dµβϕ

and

P ′′(βϕ) = Varµβϕ(ϕ)
def

=

∫
ϕ2

dµβϕ −
(∫

ϕ dµβϕ

)
2

≥ 0.

Hence β 7→ P(βϕ) = logZ(βϕ) is convex.

We have equality if and only if ϕ is constant.



A consequence: If u∗ ∈ R such that minΩ ϕ < u∗ < maxΩ ϕ, then there

exists a unique value β∗ ∈ R such that∫
ϕ dµβ∗ϕ = u∗

and µβ∗ϕ maximizes entropy among all the probability measures ν such

that

∫
ϕ dν = u∗.

All the previous quantities and identities, appropriately defined in the con-

text of Ω = AN will show up.

The goal will be to construct Gibbs measures which are le� invariant by

the shi� map.



Lecture 1 :

The basic theory and limit

theorems for Birkho� sums



Shift spaces and subshifts of finite type

A: a finite set

M: a |A| × |A| matrix of zeroes and ones where the (i, j)th entry is zero

precisely when it is a forbidden word of length two.

Define

Ω = ΩA =
{
x = (xi)∞i=0

: xi ∈ A, i ≥ 0,M(xi, xi+1) = 1

}
⊆ AN.

Example : A = {a, b}, M(a, a) = M(a, b) = M(b, a) = 1 and M(b, b) = 0,

hence the word bb is forbidden in the configurations.

Shi� map T : (Tx)n = xn+1
, n = 0, 1, . . ..

Then (Ω, T ) is shi� of finite type.



We give A the discrete topology, making Ω a compact space with the cor-

responding product topology which is generated by the corresponding

cylinder sets

[a0a1 · · · an] =
{
x ∈ Ω : xk = ak , 0 ≤ k ≤ n

}
where a0, . . . , an ∈ A, n = 0, 1, . . ..

A distance metrizing Ω:

dθ(x, y) = θ inf{k≥0 :xk 6=yk}

where θ ∈ (0, 1) is some fixed number.

Assumption: there exists m ≥ 1 such that Mm(s, s′) > 0 ∀(s, s′) ∈ A2
.

This is equivalent to the fact that (Ω, T ) is topologically mixing.



Probability measures are defined on the Borel sigma-algebra which is gen-

erated by cylinder sets.

A probability measure µ is shi�-invariant if µ ◦ T−1 = µ.

Equivalently:∫
f ◦ T dµ =

∫
f dµ for all continuous functions f : Ω→ R.

The set of shi�-invariant probability measures is compact in the weak

topology.



Goal

Given ϕ : Ω→ R “su�iciently regular”, how can one construct

the corresponding Gibbs measures and equilibrium states?

What about uniqueness?

What about their statistical properties?



What we mean by a Gibbs measure

Definition

A probability measure µ on Ω is called a Gibbs measure for the potential

ϕ ∈ C(Ω) if there are constants cϕ ≥ 1 and P(ϕ) ∈ R such that

c−1

ϕ ≤
µ
(
[x0 · · ·xn−1]

)
exp

(
− nP(ϕ) + Snϕ(x)

) ≤ cϕ

for any x = (xi)∞i=0
∈ Ω and for any n ≥ 1. We do not require that µ

should be shi�-invariant.

As usual, Snϕ(x) =
∑n−1

j=0
ϕ(T jx) (nth Birkho� sum of ϕ under the shi�).



If µ is a Gibbs measure then

P(ϕ) = lim
n→+∞

1

n
log

∑
a0,..., an−1∈A
M(ai ,ai+1)=1

e
sup{Sn ϕ(x) :xi=ai , i=0,...,n−1} .



Regular = Lipschitz

For f ∈ C(Ω) let

varn( f )
def

= sup{| f (x)− f (y)| : xi = yi, 0 ≤ i ≤ n− 1}.

Then varn( f )→ 0.

Now consider

{ f ∈ C(Ω) : ∃L > 0 such that varn( f ) ≤ Lθn, n = 1, 2, . . .}

and

lip( f ) = sup

{
| f (x)− f (y)|

dθ(x, y)
: x 6= y

}
= sup

{
varn( f )

θn
: n ∈ N

}
.

A norm making this space a Banach space is

‖ f ‖ = ‖ f ‖∞ + lip( f ).



Ruelle’s Perron-Frobenius operator

Given ϕ : Ω→ R continuous, define Ruelle’s Perron-Frobenius

operator, or transfer operator, Rϕ : C(Ω)→ C(Ω) as

Rϕ f (x) =
∑

y ∈ T−1{x}

f (y) e
ϕ(y) =

∑
Ty=x

f (y) e
ϕ(y)

=
∑
a∈A

f (ax) e
ϕ(ax), x ∈ Ω

where ax = ax0x1 . . . .
By induction one checks that

R
k
ϕ f (x) =

∑
T ky=x

f (y) e
Skϕ(y)

=
∑

a0,..., ak−1∈A

f (a0 . . . ak−1x) e

∑k−1

i=0
ϕ(T i(a0... ak−1x))

where R
1

ϕ = Rϕ, R
2

ϕ = Rϕ ◦Rϕ, and so forth.



Ruelle’s Perron-Frobenius theorem

Let ϕ be Lipschitz. Then there are λϕ > 0, Kϕ > 1, hϕ Lipschitz, and a

measure νϕ such that K−1

ϕ ≤ hϕ ≤ Kϕ and

Rϕ hϕ = λϕhϕ, R
∗
ϕ νϕ = λϕνϕ,

∫
hϕdνϕ = 1.

Moreover, there exists a constant c = c(ϕ) and ρ = ρ(ϕ) < 1 such that

for all f Lipschitz and for all k ≥ 1 we have∥∥∥λ−kϕ R
k
ϕ f −

( ∫
f dνϕ

)
hϕ
∥∥∥ ≤ cρk‖ f ‖

where ‖ · ‖ := ‖ · ‖∞ + lip(·).



Corollary of Ruelle’s Perron-Frobenius theorem

Theorem.

Let ϕ be Lipschitz. Then

The probability measure µϕ
def

= hϕνϕ is shi�-invariant.

It is a Gibbs measure with P(ϕ) = log λϕ.

It is mixing (hence ergodic), and it is the unique Gibbs measure for

ϕ.

It has exponential decay of correlations: there exist D > 0,

γ ∈ (0, 1) such that for f , g Lipschitz∣∣∣∣∫ f · g ◦ T n
dµϕ −

∫
f dµϕ

∫
g dµϕ

∣∣∣∣ ≤ D‖ f ‖‖g‖γn, n ≥ 0.



Proof that µϕ is shift-invariant

Let f ∈ C(Ω).

Notice that for f1, f2 ∈ C(Ω)(
(Rϕ f1) · f2

)
(x) =

∑
Ty=x

f1(y) e
ϕ(y) f2(x) =

∑
Ty=x

f1(y) e
ϕ(y) f2(Ty)

= Rϕ

(
f1 · ( f2 ◦ T )

)
(x).

Hence∫
f dµϕ =

∫
f hϕdνϕ =

∫
λ−1

ϕ Rϕ hϕ · f dνϕ=λ−1

ϕ

∫
Rϕ

(
hϕ · ( f ◦ T )

)
dνϕ

=

∫ (
hϕ · ( f ◦ T )

)
λ−1

ϕ d(R
∗
ϕ νϕ) =

∫ (
hϕ · ( f ◦ T )

)
dνϕ

=

∫
f ◦ T dµϕ.



Proof that µϕ is a Gibbs measure (sketch)

Fix x ∈ Ω, n ≥ 1 and let E def

= [x0 · · ·xn−1].

Then

µϕ(E) =

∫
1Ehϕ dνϕ = λ−nϕ

∫
R
n
ϕ

(
1Ehϕ

)
dνϕ

Now, get an upper bound and a lower bound for R
n
ϕ

(
1Ehϕ

)
.

(We omit the details, see Bowen’s book.)



Normalization of potentials and probabilistic

interpretation thereof

One can normalize ϕ: For f ∈ C(Ω) let

Qϕ f =
Rϕ( fhϕ)

λϕhϕ
.

Thus

Qϕ 1 = 1 and Q
∗
ϕ µϕ = µϕ.

Let g denote the inverse of the “Jacobian” of T , and g(k)
the inverse of the

“Jacobian” of T k
, that is,

g =
hϕ

λϕ hϕ ◦ T
exp(ϕ) and g(k) =

hϕ
λkϕ hϕ ◦ T k exp (Skϕ) . (1)



Therefore

Qϕ f (x) =
∑
Ty=x

g(y)f (y) and Q
k
ϕ f (x) =

∑
T ky=x

g(k)(y)f (y) .

We have a Markov chain with state space Ω and the probability to jump

from x to ax is g(ax) (so we are looking “backward in time”).



Eqilibrium states and the variational principle

Let ν be a T -invariant probability measure. Its entropy is

s(ν) = lim
n→+∞

−1

n

∑
a0:n−1∈An

ν([a0:n−1]) log ν([a0:n−1]).

Definition

A shi�-invariant probability measure µ is an equilibrium state for ϕ ∈
C(Ω) if

s(µ) +

∫
ϕ dµ = sup

ν is T−invariant

(
s(ν) +

∫
ϕ dν

)
.

Equilibrium states always exist.

Theorem (Variational principle for Lipschitz potentials)

Let ϕ be a Lipschitz potential. Then its Gibbs measure µϕ is the unique

equilibrium state for ϕ.



Birkhoff’s ergodic theorem

There exists some measurable set Tµϕ ⊂ Ω with µϕ(Tµϕ) = 1 (the set of

“typical points” for µϕ) such that

Sn f (x)

n
=

1

n

n−1∑
j=0

f (T jx) −−−−→
n→+∞

∫
f dµϕ

for every x ∈ Tµϕ and every continuous function f : Ω → R. This state-

ment can reformulated by saying that

En(x)
def

=
1

n

n−1∑
j=0

δT jx −−−−→n→+∞
µϕ

for every x ∈ Tµϕ in the weak topology sense.



Two basic qestions

Take u > 0. At which speed does

µϕ

(
x ∈ Ω :

Sn f (x)

n
≥
∫

f dµϕ + u
)

decays to 0?

Does Sn f /
√
n converge in law to Gaussian random variable with mean 0

and with a certain variance to be determined?



Large deviations of Birkhoff sums

Take a continuous function f such that

∫
f dµ = 0.

We are interested in computing the exponential rate at which the µ-

probability of the set of points x such that Sn f (x)/n is, say, greater than

u > 0.

We have

µ

(
x ∈ Ω :

Sn f (x)

n
≥ u
)

= µ
(
x ∈ Ω : βSn f (x) ≥ nβu

)
for any β > 0

≤ e
−nβu

∫
e
βSn f

dµ (by Markov’s inequality)

= exp

(
−n
(
βu − 1

n
log
∫

e
βSn f

dµ

))
.



Let us make a leap of faith and assume that the following limit exists for

every β ∈ R:

κf (β)
def

= lim
n→+∞

1

n
log
∫

e
βSn f

dµ.

We get

lim sup
n→+∞

1

n
logµ

(
x ∈ Ω :

Sn f (x)

n
≥ u
)
≤ − sup

β>0

(
βu − κf (β)

)
def

= −sf (u)

where sf is thus the Legendre-Fenchel transform of κf .



Theorem

Let ϕ be a Lipschitz potential. Then,

κf (β) = P(ϕ+ βf )− P(ϕ), β ∈ R.

Proof:

Using Ruelle’s PF theorem (first to the potential ϕ, and then to the poten-

tial f + ϕ), we have for any n ≥ 1∫
e
βSn f

dµϕ

=
∫

e
βSn f hϕdνϕ =

∫
e
βSn f hϕd

(
λ−nϕ R

∗n
ϕ νϕ

)
= λ−nϕ

∫
R
n
ϕ

(
hϕ eβSn f

)
dνϕ = λ−nϕ

∫ ∑
T ny=x

hϕ(y) eSn(ϕ+βf )(y)
)
dνϕ(x)

= λ−nϕ

∫
R
n
ϕ+βf (hϕ)dνϕ

= λ−nϕ

∫ (
λnϕ+βf hϕ+βf

( ∫
hϕdνϕ+βf

)
dνϕ +O

(
(ρϕ+βf λϕ+βf )n

))
dνϕ.

Hence κf (β) = log λϕ+βf − log λϕ = P(ϕ+ βf )− P(ϕ). �



Full large deviations of Birkhoff sums

Theorem

Let f be Lipzchitz. Assume that f is not cohomologous to a constant, that

is, there is no b Lipschitz and c ∈ R such that f = c + b ◦ T − b. Then for

any interval I with I ∩ (pf , pf ) 6= ∅ we have

lim
n→+∞

1

n
logµϕ

(
x ∈ Ω :

Sn f (x)

n
∈ I
)

= − inf
u∈I ∩ (pf ,pf )

sf (u)

where

pf
def

= lim
β→−∞

d

dβ
P(ϕ+ βf ) = inf

ν T -invariant

∫
f dν

and

pf
def

= lim
β→+∞

d

dβ
P(ϕ+ βf ) = sup

ν T -invariant

∫
f dν.

(The case f = c + b ◦ T − b is special because ‖Sn f /n‖∞ ≤ c + (2‖b‖∞)/n which becomes close

to c when n� 1, so Sn f /n almost doesn’t fluctuate.)



Central limit asymptotics of Birkhoff sums

Let f be Lipschitz such that

∫
f dµϕ = 0.

One can prove that

dP(ϕ+ sf )

ds

∣∣∣
s=0

=

∫
f dµϕ = 0

and

d
2P(ϕ+ sf )

ds2

∣∣∣
s=0

= lim
n→+∞

1

n

∫ (
Sn f
)

2

dµϕ
def

= σ2

f

and

σ2

f =

∫
f 2
dµϕ + 2

∑
j≥1

∫
f · f ◦ T j

dµϕ <∞

where

∫
f · f ◦ T j

dµϕ decays expoentially fast to 0.



Theorem

The variance σ2

f is equal to 0 if and only f is cohomologous to a constant,

that is, there exist b Lipschitz, c ∈ R such that f = c + b ◦ T − b. The

function s 7→ P(ϕ+ sf ) (s ∈ R) is convex, and strictly convex if σ2

f 6= 0.



Theorem (Berry-Esseen inequality for Gibbs measures)

Let f be Lipschitz such that

∫
f dµϕ = 0. Assume that σ2

f 6= 0. Then,

uniformly in u ∈ R, we have

µϕ

(
x ∈ Ω :

Sn f (x)√
n
≤ u
)

=
1

σf
√

2π

∫ u

−∞
e

− v2

2σ2

f
dv + O

(
1√
n

)
.

In particular, the central limit theorem holds for Lipschitz functions:

Sn f (x)√
n

law−→ N (0, σ2

f ).

The strategy to prove the central limit theorem for Birkho� sums relies on

characteristic functions and the identity∫
e

iβSn f√
n
dµϕ =

∫
Q

n
ϕ+ iβ√

n
f
1 dµϕ, β ∈ R

where 1 denotes the function which is constantly equal to 1.





Lecture 2 :

Gaussian concentration bound,

and some applications



Recap

(Ω, T ) is a subshi� of finite type of the full shi� (AN, T ) where A is a finite

set (alphabet).

Take a Lipschitz potential ϕ : Ω → R (with respect to the distance

dθ(x, y) = θ inf{k≥0 :xk 6=yk}
).

Then there exists a unique Gibbs measure µϕ which is shi�-invariant:

∃ cϕ ≥ 1 such that

c−1

ϕ ≤
µϕ
(
[x0 · · ·xn−1]

)
exp

(
− nP(ϕ) + Snϕ(x)

) ≤ cϕ

for any x = (xi)∞i=0
∈ Ω and for any n ≥ 1, where P(ϕ) = log λϕ.

(Remember that Rϕ hϕ = λϕhϕ, etc.)

µϕ is also the unique equilibrium state for ϕ and in particular

P(ϕ) = s(µϕ) +

∫
ϕ dµϕ.



We saw two basic limit theorems for Bikho� sums of Lipschitz functions

(observables):

Large deviations:

For f Lipschitz with

∫
f dµϕ = 0

µϕ

(
x ∈ Ω :

Sn f (x)

n
≥ u
)

decays exponentially fast with n with rate function given by the Legendre

transform of

β 7→ P(ϕ+ βf )− P(φ).

Central limit theorem:

Sn f (x)√
n

law−→ N (0, σ2

f )

where

σ2

f = lim
n→+∞

1

n

∫ (
Sn f
)

2

dµϕ =

∫
f 2
dµϕ + 2

∑
j≥1

∫
f · f ◦ T j

dµϕ <∞



Going beyond Birkhoff sums and non-asymptotic

results

What can we say for general observables of the form F (x, Tx, . . . , T n−1x)
which are su�iciently regular but otherwise can be non-additive or implic-

itly defined? (Birkho� sums are an example of an additive F .)

Can be obtain an upper bound for

µϕ

(
x ∈ Ω :

∣∣∣F (x, Tx, . . . , T n−1x)−
∫

F (y, Ty, . . . , T n−1y) dµϕ(y)
∣∣∣ ≥ u

)
which decays fast in u > 0 and in n (a�er an appropriate rescaling)?

This is the purpose of “concentration inequalities”.



A motivating example

Consider the empirical measure En(x) := 1

n

∑n−1

j=0
δT jx.

We saw that there exist Tµϕ ⊂ Ω with µϕ(Tµϕ) = 1 such that

En(x) −−−−→
n→+∞

µϕ

for every x ∈ Tµϕ in the weak topology sense.

Consider the Kantorovich distance dK on the space of probability mea-

sures.

At which speed dK(En(x), µϕ) goes to 0?



For two probability measures µ1, µ2 on Ω

dK(µ1, µ2) = sup

(∫
g dµ1 −

∫
g dµ2 : g : Ω→ R is 1-Lipschitz

)
By Kantorovich-Rubinstein theorem one has the dual representation

dK(µ1, µ2) = inf

(∫ ∫
dθ(x, y) dπ(x, y) : π is a coupling of µ1 and µ2

)



A class of functions

Let n ∈ N.

F : Ωn → R is separately Lipschitz if∣∣F (x0, . . . , xi−1, xi, xi+1, . . . , xn−1)− F (x0, . . . , xi−1, x
′
i , xi+1, . . . , xn−1)

∣∣
≤ lipi(F ) dθ(xi, x

′
i)

for all x1, . . . , xi, . . . , xn, x
′
i in Ω et ∀i = 1, . . . , n.

Basic but important example:
f : Ω→ R Lipschitz and F (x0, . . . , xn−1) = f (x0) + · · ·+ f (xn−1)
whence F (x, Tx, . . . , T n−1x) = Sn f (x).

One has lipi(F ) = lip( f ), i = 0, . . . , n− 1.



Gaussian concentration bound (GCB)

Theorem

Let ϕ be a Lipschitz potential.

Then there exists C > 0 such that, for any n ∈ N, for any

separately Lipschitz function F : Ωn → R, we have∫
dµϕ(x) eF (x,...,T n−1x)−

∫
F (y,...,T n−1y)dµϕ(y) ≤ e

C
2

∑n−1

i=0
lipi(F )2

Crucial point : C neither depends on n nor on F .

Remarks:

• One can get a (ugly) explicit expression for C in terms of |A|,
‖hϕ‖∞, ‖ϕ‖, m, etc, by using a result by Stoyanov.

• Centering F (x, . . . , T n−1x) in some way of another is

necessary because the right-hand side is invariant to constant

o�sets of the function.



Two corollaries of GCB(C)

First corollary:

µϕ

(
x ∈ Ω : F (x, . . . , T n−1x) ≥

∫
F (y, . . . , T n−1y) dµϕ(y) + u

)
≤ exp

(
− u2

2C
∑n−1

i=0
lipi(F )2

)
, ∀n ∈ N,∀u > 0.

Remark:

GCB(C) tells us about F (x, . . . , T n−1x) −
∫
F (y, . . . , T n−1y) dµϕ(y) but

very o�en we are interested in F (x, . . . , T n−1x), so we have to find a

“good” upper bound for

∫
F (y, . . . , T n−1y)dµϕ(y).



Proof

To alleviate notation set

F = F (x, . . . , T n−1x),

∫
F =

∫
F (y, . . . , T n−1y)dµϕ(y), etc.

Then, for any η > 0, one has by Markov’s inequality

µϕ

(
F −

∫
F ≥ u

)
= µϕ

(
e

η

(
F−

∫
F

)
≥ e

ηu
)
≤ e
−ηu

∫
e
η(F−

∫
F )

≤ e
−ηu

e

Cη2

2

∑n−1

i=0
lipi(F )2

(GCB(C) applied to ηF ).

Then minimize the r.h.s. over η > 0. �



Applying the previous bound to −F we get by a union bound

µϕ

(
x ∈ Ω :

∣∣∣F (x, . . . , T n−1x)−
∫

F (y, . . . , T n−1y)dµϕ(y)
∣∣∣ ≥ u

)
≤ 2 exp

(
− u2

2C
∑n−1

i=0
lipi(F )2

)
,∀n ∈ N, ∀u > 0.



Second corollary:∫
F 2(x, . . . , T n−1x) dµϕ(x)−

(∫
F (y, . . . , T n−1y) dµϕ(y)

)
2

≤ C
n−1∑
i=0

lipi(F )2.

Hence C
∑n−1

i=0
lipi(F )2

is a proxy for the variance of the separately Lips-

chitz function F : Ωn → R.



Proof

For every η > 0

1

η2

(∫
e
η(F−

∫
F )
dµϕ − 1

)
≤ 1

η2

(
e

Cη2

2

∑n−1

i=0
lipi(F )2 −1

)
By Taylor expansion∫

e
η(F−

∫
F )
dµϕ − 1 = η

(∫ (
F −

∫
F
)

︸ ︷︷ ︸
=0

)
+
η2

2

∫ (
F −

∫
F
)

2︸ ︷︷ ︸
=Var(F )

+o(η2)

and

e

Cη2

2

∑n−1

i=0
lipi(F )2 −1 =

Cη2

2

n−1∑
i=0

lipi(F )2 + o(η2). �



Comparison with large deviations and central

limit asymptotics in the case of Birkhoff sums

f : Ω→ R Lipschitz and F (x0, . . . , xn−1) = f (x0) + · · ·+ f (xn−1)
whence F (x, Tx, . . . , T n−1x) = Sn f (x).

One has lipi(F ) = lip( f ), hence

∑n−1

i=0
lipi(F )2 = n lip( f )2

.

We get

µϕ

(
x ∈ Ω :

∣∣∣Sn f (x)− n
∫

f dµϕ
∣∣∣ ≥ u

)
≤ 2 e

− u2

2Cn lip( f )2 , ∀u > 0, n ≥ 1.



Scale of large deviations: replace u by un to get

µϕ

(
x ∈ Ω :

∣∣∣Sn f (x)

n
−
∫

f dµϕ
∣∣∣ ≥ u

)
≤ 2 e

− nu2

2C lip( f )2︸ ︷︷ ︸
exponentially decaying in n

,∀u > 0, n ≥ 1.

Scale of the central limit theorem: replace u by u
√
n to get

µϕ

(
x ∈ Ω :

∣∣∣Sn f (x)−
∫
f dµϕ√

n

∣∣∣ ≥ u
)
≤ 2 e

− u2

2C lip( f )2︸ ︷︷ ︸
Gaussian tail

,∀u > 0, n ≥ 1.

For Birkho� sums appropriately normalized we get the right dependences

in u and n wrt to large deviations and central limit asymptotics.



Two applications of GCB(C)

(among many others)



Shadowing orbits using orbits

started from a subset of Ω

Soit B ⊂ Ω tel que µϕ(B) > 0:

SB(x, n) =
1

n
inf
y∈B

n−1∑
i=0

dθ(T ix, T iy) ∈ [0, 1] .

Theorem

For all u >
√

2C ln(µϕ(B)−1) and for all n ∈ N, we have

µϕ

{
x ∈ Ω : SB(x, n) ≥ u√

n

}
≤ e
− u2

8C .



Proof

Let F (x0, . . . , xn−1) = 1

n infy∈B
∑n−1

j=0
dθ(xj, T jy) so that

F (x, . . . , T n−1x) = SB(x, n).

You can check that lipi(F ) = 1

n , i = 0, . . . , n− 1.

Using the above corollary we have

µϕ

{
x ∈ Ω : SB(x, n) ≥

∫
SB(y, n) dµϕ(y) +

u√
n

}
≤ e
− u2

2C , ∀n ≥ 1, u > 0.

Now we want to obtain an upper bound for

∫
SB(y, n) dµϕ(y).



Upper bound for

∫
SB(y, n) dµϕ(y)

We have for every η > 0

µϕ(B) =

∫
e
−ηSB(x,n) 1B(x) dµϕ(x) ≤

∫
e
−ηSB(x,n)

dµϕ(x)

≤︸︷︷︸
by GBC(C)

e
−η

∫
SB(y,n)dµϕ(y)

e

Cη2

2n .

Hence ∫
SB(y, n)dµϕ(y) ≤ Cη

2n
+

log
(
µϕ(B)−1

)
η

∀η > 0.

Optimizing over η > 0 yields∫
SB(y, n)dµϕ(y) ≤

√
2C log(µϕ(B)−1)

n
.



Empirical measure

Remember that En(x) = 1

n

∑n−1

j=0
δT jx and there exist Tµϕ ⊂ Ω with

µϕ(Tµϕ) = 1 such that

En(x) −−−−→
n→+∞

µϕ

for every x ∈ Tµϕ in the weak topology sense.

At which speed dK(En(x), µϕ) goes to 0?

Theorem

There exists u0 and C′ > 0 such that for any u > u0 and any n ≥ 1

µϕ

(
x ∈ Ω : dK(En(x), µϕ) ≥ u√

n

)
≤ e
−C′u2

.



Sketch of proof

Define the function

F (x0, . . . , xn−1) = sup

{
1

n

n−1∑
j=0

g(xj)−
∫

g dµϕ : g : Ω→ R is 1-Lipschitz

}
.

It is pre�y clear that lipi(F ) ≤ 1/n for all i = 1, . . . , n− 1.

The hard part is to find a good upper bound for

∫
dK(En(y), µ) dµϕ(y).

We omit the proof.



More applications

In the context of shi�s of finite type, there are other

applications:

Plug-in estimator for entropy

Return times (another entropy estimator)

Speed of Markov approximation in d-distance.

Etc.



Beyond shifts of finite type with a Gibbs measure,

and beyond Gaussian concentration (very

sketchy)

There is a large class of nonuniformly hyperbolic dynamical

systems modelled by Young towers with return-time functions

with exponential tails for which GCB(C) holds. The proof is

almost the same as the one for shi�s of finite type with a Gibbs

measure.

GCB(C) breaks down for nonuniformly hyperbolic dynamical

systems modelled by Young towers with return-time functions

with polynomial tails.

The prototype of such systems is the map T : [0, 1]→ [0, 1]
given by

Tx =

{
x(1 + 2

αxα) 0 ≤ x < 1

2

2x− 1
1

2
≤ x < 1

where α ∈ (0, 1) is a parameter. The trouble (only) comes from

the indiferrent fixed point at 0.
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